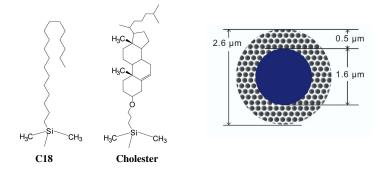


A Novel Core-Shell HPLC Column with Unique Shape Selectivity


Ken Tseng¹, Toshi Ono¹, Tsunehisa Hirose², Kazuhiro Kimata² ¹Nacalai USA, Inc., San Diego, United States, ²Nacalai Tesque, Inc., Kyoto, Japan

Introduction

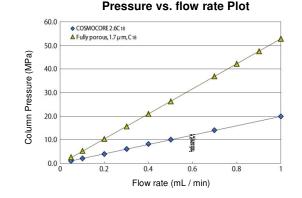
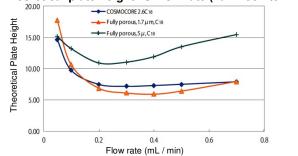
We investigated the performance of a cholesterol-bonded stationary phase in core-shell vs. fully porous particles. The core-shell column maintained good baseline separation under 3 minutes compare with 20 minutes in a 5μ m column for a catechin mixture. Antioxidants such as catechins found in green tea are associated with numerous health benefits. Epigallocatechin gallate (EGCG) is the most abundant, but other catechins may also play important roles. Cholester has similar hydrophobicity and better shape selectivity compare with C18. This alternate selectivity allows Cholester to purify structural isomers or compounds with closely related structures under typical reversed-phase conditions. The characteristics and advantages of the Cholester stationary phase especially when combined with the advantages of core-shell are shown as a good alternative to C18.

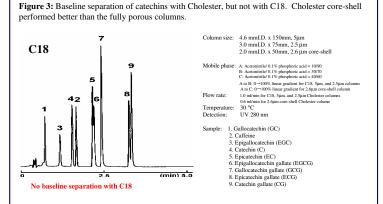
COSMOCORE and COSMOSIL Cholester Material Characteristics

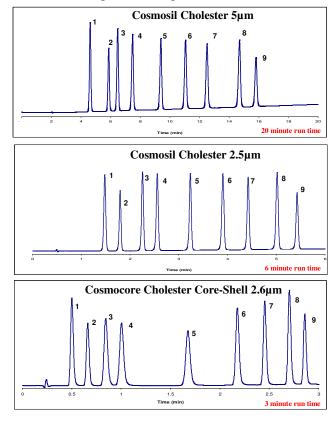
	Core-Shell	Fully Porous		
Name:	Cosmocore Cholester	Cosmosil Cholester		
Silica Gel	High Purity Spherical Silica	High Purity Spherical Silica		
Stationary Phase	Cholesteryl group	Cholesteryl group		
Average Particle Size	2.6 µm ; core 1.6 µm	2.5 μm	5.0 µm	15 µm
Average Pore Size	90 Å	130 Å	120 Å	120 Å
Surface Area	150 m²/g	330 m²/g	300 m²/g	300 m²/g
Carbon content	N/A	approx. 21%	approx. 20%	approx. 20%

Core-Shell has Reduced Back Pressure and Similar Plate Height

Figure 1: 2.6 μm core-shell has lower back pressure compare with 1.7 μm fully porous particle


Figure 2: 2.6 µm core-shell has similar plate height as the 1.7 µm fully porous particle



Column size: 2.1 mmI.D. x 50 mm, Mobile phase: Acetonitrile : Water = 70 : 30, Temperature: 40 °C, Sample: Amylbenzene

Catechin Mixture Separation

Catechin Mixture Separation Comparison

Conclusions

- Cosmocore Cholester achieved baseline separation of the catechin mixture in under 3 minutes
- Because of the rigid structure of cholesteryl group, COSMOSIL Cholester shows greater planarity selectivity and better resolution for geometric isomers.
- Catechin mixture was baseline separated by Cholester HPLC column under a typical reversed-phase condition